226 research outputs found

    Internship workplace preferences of final-year medical students at Zagreb University Medical School, Croatia: all roads lead to Zagreb

    Get PDF
    BACKGROUND: Human resources management in health often encounters problems related to workforce geographical distribution. The aim of this study was to investigate the internship workplace preferences of final-year medical students and the reasons associated with their choices. METHOD: A total of 204 out of 240 final-year medical students at Zagreb University Medical School, Croatia, were surveyed a few months before graduation. We collected data on each student's background, workplace preference, academic performance and emigration preferences. Logistic regression was used to analyse the factors underlying internship workplace preference, classified into two categories: Zagreb versus other areas. RESULTS: Only 39 respondents (19.1%) wanted to obtain internships outside Zagreb, the Croatian capital. Gender and age were not significantly associated with internship workplace preference. A single predictor variable significantly contributed to the logistic regression model: students who believed they would not get the desired specialty more often chose Zagreb as a preferred internship workplace (odds ratio 0.32, 95% CI 0.12–0.86). CONCLUSION: A strong preference for Zagreb as an internship workplace was recorded. Uncertainty about getting the desired specialty was associated with choosing Zagreb as a workplace, possibly due to more extensive and diverse job opportunities

    Genome-wide association study identifies _FUT8_ and _ESR2_ as co-regulators of a bi-antennary N-linked glycan A2 (GlcNAc~2~Man~3~GlcNAc~2~) in human plasma proteins

    Get PDF
    HPLC analysis of N-glycans quantified levels of the biantennary glycan (A2) in plasma proteins of 924 individuals. Subsequent genome-wide association study (GWAS) using 317,503 single nucleotide polymorphysms (SNP) identified two genetic loci influencing variation in A2: FUT 8 and ESR2. We demonstrate that human glycans are amenable to GWAS and their genetic regulation shows sex-specific effects with _FUT 8_ variants explaining 17.3% of the variance in pre-menopausal women, while _ESR2_ variants explained 6.0% of the variance in post-menopausal women

    The effect of case management on childhood pneumonia mortality in developing countries

    Get PDF
    Background With the aim of populating the Lives Saved Tool (LiST) with parameters of effectiveness of existing interventions, we conducted a systematic review of the literature assessing the effect of pneumonia case management on mortality from childhood pneumonia

    Genome-wide meta-analysis identifies novel loci associated with parathyroid hormone level

    Get PDF
    Abstract Background Parathyroid hormone (PTH) is one of the principal regulators of calcium homeostasis. Although serum PTH level is mostly accounted by genetic factors, genetic background underlying PTH level is insufficiently known. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels. Methods We performed GWAS meta-analysis within two genetically isolated Croatian populations followed by replication analysis in a Croatian mainland population and we also combined results across all three analyzed populations. The analyses included 2596 individuals. A total of 7,411,206 variants, imputed using the 1000 Genomes reference panel, were analysed for the association. In addition, a sex-specific GWAS meta-analyses were performed. Results Polymorphisms with the lowest P-values were located on chromosome 4 approximately 84 kb of the 5′ of RASGEF1B gene. The most significant SNP was rs11099476 (P = 1.15 × 10−8). Sex-specific analysis identified genome-wide significant association of the variant rs77178854, located within DPP10 gene in females only (P = 2.21 × 10− 9). There were no genome-wide significant findings in the meta-analysis of males. Conclusions We identified two biologically plausible novel loci associated with PTH levels, providing us with further insights into the genetics of this complex trait

    Estimating pneumonia deaths of post-neonatal children in countries of low or no death certification in 2008

    Get PDF
    BACKGROUND: Pneumonia is the leading cause of child deaths globally. The aims of this study were to: a) estimate the number and global distribution of pneumonia deaths for children 1-59 months for 2008 for countries with low (85% coverage of death certification countries was used. For 87 high child-mortality countries pneumonia death estimates were obtained by applying a regression model developed from published and unpublished verbal autopsy data from high child-mortality settings. The total number of 1-59 months pneumonia deaths for the year 2008 for these 122 countries was estimated to be 1.18 M (95% CI 0.77 M-1.80 M), which represented 23.27% (95% CI 17.15%-32.75%) of all 1-59 month child deaths. The country level estimation correlation coefficient between these two methods was 0.40. INTERPRETATION: Although the overall number of post-neonatal pneumonia deaths was similar irrespective to the method of estimation used, the country estimate correlation coefficient was low, and therefore country-specific estimates should be interpreted with caution. Pneumonia remains the leading cause of child deaths and is greatest in regions of poverty and high child-mortality. Despite the concerns about gender inequity linked with childhood mortality we could not estimate sex-specific pneumonia mortality rates due to the inadequate data. Life-saving interventions effective in preventing and treating pneumonia mortality exist but few children in high pneumonia disease burden regions are able to access them. To achieve the United Nations Millennium Development Goal 4 target to reduce child deaths by two-thirds in year 2015 will require the scale-up of access to these effective pneumonia interventions

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.

    Get PDF
    Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57)). After a correction for multiple comparisons (P-value<2.2×10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits

    Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression
    corecore